经典案例
您当前的位置 : 首 页 > 案例展示 > 工矿企业

双碳能源技术中的光储充一体微电网能量系统设计与性能分析

案例属性

  • 所属分类:工矿企业
  • 浏览次数:0
  • 发布日期:2024-12-30
  • 产品概述

摘要:随着全球对可再生能源的关注不断增加,双碳能源技术成为应对气候变化和实现碳中和目标的重要方向之一。双碳能源技术是一种绿色、可持续的能源发展方向,光储充一体系统作为其中的重要组成部分,具有将光能转化为电能并进行储存和供电的功能。文章对光储充一体系统的设计与性能进行分析,以期为双碳能源技术的推广和应用提供技术支持。

关键词:双碳能源技术 ;光储充一体系统 ;光伏发电 ;电能储存

1、双碳能源技术和光储充一体系统分析

1.1双碳能源技术

双碳能源技术是一项综合运用多种*进技术的战略性能源方案,旨在降低能源生产与利用过程中的 CO2和甲烷排放,实现能源系统的低碳与低甲烷化。该技术涵盖清洁能源生产、能源储存与调度、碳排放控制与碳利用、甲烷排放控制及能效提升等关键技术领域。通过采用太阳能光伏、风力发电等清洁能源生产技术,以及电化学储能、氢能储存等能源储存技术,实现了对可再生能源的*效利用。同时,通过碳捕获与封存、碳利用技术,有效减少 CO2排放并实现其资源化利用。在甲烷排放方面,生物甲烷控制技术和监测技术有望降低甲烷排放水平。智能能源管理系统和*效用能技术的应用则有助于提高整体能源系统的效能。

1.2光储充一体系统

光储充一体系统是一种综合利用太阳能的技术,其包括太阳能光伏发电、能量存储和电池充电等功能。该系统的核心在于将太阳能转化为电能,并将其储存起来,以供电池充电或供电使用。光储充一体系统是一种集成化的解决方案,有助于提高太阳能利用效率,减少电能浪费,以及实现可持续能源的管理和利用。光储充一体系统(图1)包括太阳能光伏发电组件、能量存储装置(如锂电池或电容器)及智能电池管理系统。太阳能光伏发电组件通过光电效应将太阳辐射转化为直流电能,然后,能量存储装置将电能存储起来,以备不时之需,*后,智能电池管理系统监控和管理电池的充放电过程,确保系统的稳定性和可靠性。

2、光储充一体系统设计

2.1 太阳能光伏组件选择与设计

在太阳能光伏组件选择与设计方面,采用*效的单晶硅太阳能电池板,提高能量转换效率,具备*越的适应性和耐候性。通过*密布局和倾斜角设置,*大程度地优化电池板的日照接收,并通过详尽的阴影分析,*小化阴影损失。选择效率超过20% 的单晶硅太阳能电池板,确保系统在有限空间内获得*大能量收集。在电池和充电控制器选择方面,采用高能量密度、轻量和长寿命的锂离子电池,搭配*进的*大功率点跟踪(MPPT)充电控制器,以*大化充电效率并对电池进行保护。通过高度优化的固定支架或双轴追踪系统,确保光伏组件在不同季节和天气条件下*大程度地接收太阳辐射。引入多层次的实时监控系统及远程监控和报警系统,监测电池状态、光伏组件性能和充电控制器运行情况等,以保障实时性的数据记录。*后,为确保光储充一体系统的可持续运行,引入自动清洁系统,并制订了定期巡检计划,以定期检查电缆连接和系统组件,以充分发挥光储充一体系统在能源收集和利用方面的潜力。

2.2 储能设备选择与设计

在储能设备选择与设计方面,选择锂离子电池储能系统作为*佳解决方案,考虑其高能量密度、长寿命和轻量特性。通过进行系统能量需求分析,确定额定容量和*大充放电功率,以适应周期性和突发性负载需求。优化连接方案,将储能系统与太阳能光伏组件和充电控制器集成,*小化能量转换损失。考虑循环寿命,实施深度充放电管理、温度控制和充电电流控制,以*大程 度延长电池寿命。集成*家法规标准,采用安全措施,如温度传感器和电流限制,以预防安全风险。进行*面的经济性分析,考虑投资成本、运营维护成本和电池寿命成本,以确保经济可行性。制订定期的维护计划,监测电池健康状态、检查连接线路和系统软硬件,以确保储能系统长期稳定运行。

2.3 电力转换器设计

在电力转换器设计中,选用*效的直流 – 交流逆变器,以*小化能量损耗,满足系统直流电能向交流电能转换的需求。通过功率容量匹配、电流和电压稳定性控制,确保逆变器适应各种负载变化,同时优化响应时间和效率。引入智能控制策略,实时监测电力需求和太阳能光伏系统输出,以*大化能量利用。配置过载和短路保护机制,保障系统安全运行。整合温度管理系统,提高逆变器在高温环境下的运行效率和寿命。通过遥测与监控系统,远程监测逆变器性能,记录关键参数,实现故障诊断和性能优化。这一系列措施旨在提高电力转换器的效能,为光储充一体系统提供稳定、*效的电能转换。

2.4 控制系统设计

在控制系统设计方面,采用*进的 MPPT 算法,提高光伏组件的能量利用效率。结合智能充放电控制,优化储能设备的运行,以适应动态的电能需求。配置远程监控系统,实现对系统状态的实时监测与远程管理。这一*面的控制系统设计旨在*大程度地提高系统整体性能,确保光储充一体系统在不同工况下实现*效稳定的运行。

3、光储充一体系统性能分析

3.1 能量转换效率分析

太阳能光伏组件中的*效单晶硅电池板选择和*密设计的布局使得系统在不同日照条件下能够*大化吸收太阳辐射,从而实现高能量转换效率。采用的单晶硅太阳能电池板具有超过20% 的效率,这使得系统在有限的空间内能够获得*大的能量收集。通过电池和充电控制器的*效设计,系统有效地将太阳能转化为直流电能,并通过储能设备中的锂离子电池实现能量的*效储存。在电力转换器方面,选用了*效的直流 – 交流逆变器,逆变器在将储存的直流电能转换为交流电能时,通过*进的 MPPT 算法,光伏组件的能量输出得到*大化。同时,系统实时监测电力需求、光伏发电和储能状态,通过智能控制策略优化能量的分配,使得系统在动态电能需求变化中保持*效运行。某遥测与监控系统的实时数据记录显示,在不同天候和负载条件下,系统的总体能量转换效率维持在85% 以上。

3.2 储能效率分析

储能效率直接关系到储能系统对太阳能的有效吸收和释放。储能效率的主要影响因素包括充电和放电的过程效率及电池的自放电损失。经过深度充放电管理、温度控制和适当的充电电流控制,系统成功降低了充电和放电阶段的能量损失。根据 IEC 61683,充电阶段的效率可达到95% 以上,而放电阶段的效率维持在90% 以上。这一数据表明,系统在能量的储存和释放过程中表现*色,有效地优化了能源管理并降低了损耗。在电池管理系统(BMS)的引导下,系统成功实现了对电池循环寿命的*大化控制。通过*密的电池监控系统,实时监测电池的状态,包括电压、电流和温度等参数。此外,系统采用*进的 BMS 算法对电池进行均衡管理,进一步确保电池组件的寿命得到有效延长。根据 IEC 61683,在标准运行条件下,整个储能系统的总体储能效率维持在85% 以上。这一储能效率的高水平表明系统在吸收太阳能并将其转化为电能,以及在需要时有效释放电能方面取得了显著成功。

3.3 供电稳定性分析

光伏组件的*效能量转换和电池的高能量密度确保了系统在太阳能供应下能够产生稳定的直流电源。具体而言,采用的单晶硅太阳能电池板在典型日照条件下实现了超过20% 的转换效率,有效提高了光伏组件的能量输出。此外,系统通过高度优化的固定支架或双轴追踪系统,确保光伏组件在不同季节和天气条件下都能*大程度地接收太阳辐射,从而提高了系统的稳定供电能力。通过深度充放电管理和温度控制,系统成功维护了储能设备的*效运行,确保了在非太阳能供应时能够提供稳定的电能输出。在储能系统的充电和放电过程中,根据IEC 61683可知,系统能够保持95% 以上的能量转换效率,从而提高了系统对电能的可靠利用。电力转换器作为能量传递的关键环节,通过采用*效率的直流 – 交流逆变器,实现了直流电能向交流电能的稳定转换。在标准操作条件下,这些逆变器的转换效率可达到90% 以上,确保系统在交流电能输出时*小化能量损耗,显著提高了供电的稳定性。这些性能指标来源于行业标准测试报告和逆变器制造商的技术规格,保证了数据的准确性和可靠性。

3.4 可靠性与寿命分析

采用的单晶硅太阳能电池板具有较低的光衰减率,从而保证了系统在多年的运行中能够保持较高的能量输出。系统的阴影分析和组件布局设计有效减小了阴影损失,*大程度地提高了光伏组件的可靠性。储能设备方面,锂离子电池以其低自放电率和较长的循环寿命为系统提供了可靠的储能媒介。深度充放电管理和温度控制有助于减缓电池的寿命衰减过程。实时电池监控系统对电池状态进行细致监测,可及时发现异常情况并采取措施,有效提升了电池的寿命。根据相关数据可知,电池组件在正常运行条件下能够保持高达10 a 以上的寿命。根据 IEC 62040可知,这些逆变器的设计寿命在标准操作条件下能够达到15 a 以上,体现了其*越的可靠性。这种持久的性能确保了系统整体的连续稳定性,为长期的能源供应提供了可靠的技术保障。

安科瑞Acrel-2000MG微电网能量管理系统

3.1概述

Acrel-2000MG储能能量管理系统是安科瑞专门针对工商业储能电站研制的本地化能量管理系统,可实现了储能电站的数据采集、数据处理、数据存储、数据查询与分析、可视化监控、报警管理、统计报表、策略管理、历史曲线等功能。其中策略管理,支持多种控制策略选择,包含计划曲线、削峰填谷、需量控制、防逆流等。该系统不仅可以实现下级各储能单元的统一监控和管理,还可以实现与上级调度系统和云平台的数据通讯与交互,既能接受上级调度指令,又可以满足远程监控与运维,确保储能系统安全、稳定、可靠、经济运行。

3.2应用场景

适用于工商业储能电站、新能源配储电站。

3.3系统结构

3.4系统功能

(1)实时监管

对微电网的运行进行实时监管,包含市电、光伏、风电、储能、充电桩及用电负荷,同时也包括收益数据、天气状况、节能减排等信息。

(2)智能监控

对系统环境、光伏组件、光伏逆变器、风电控制逆变一体机、储能电池、储能变流器、用电设备等进行实时监测,掌握微电网系统的运行状况。

(3)功率预测

对分布式发电系统进行短期、超短期发电功率预测,并展示合格率及误差分析。

(4)电能质量

实现整个微电网系统范围内的电能质量和电能可靠性状况进行持续性的监测。如电压谐波、电压闪变、电压不平衡等稳态数据和电压暂升/暂降、电压中断暂态数据进行监测分析及录波展示,并对电压、电流瞬变进行监测。

(5)可视化运行

实现微电网无人值守,实现数字化、智能化、便捷化管理;对重要负荷与设备进行不间断监控。

(6)优化控制

通过分析历史用电数据、天气条件对负荷进行功率预测,并结合分布式电源出力与储能状态,实现经济优化调度,以降低尖峰或者高峰时刻的用电量,降低企业综合用电成本。

(7)收益分析

用户可以查看光伏、储能、充电桩三部分的每天电量和收益数据,同时可以切换年报查看每个月的电量和收益。

(8)能源分析

通过分析光伏、风电、储能设备的发电效率、转化效率,用于评估设备性能与状态。

(9)策略配置

微电网配置主要对微电网系统组成、基础参数、运行策略及统计值进行设置。其中策略包含计划曲线、削峰填谷、需量控制、新能源消纳、逆功率控制等。


标签

'); })();